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Abstract

This paper presents the free vibration analysis of piezoelectric coupled annular plates using the Kirchhoff
and Mindlin plate models. The distribution of electric potential along the thickness direction in the
piezoelectric layer is simulated by a sinusoidal function such that the Maxwell static electricity equation is
satisfied. The analytical solutions are derived and validated by comparing the resonant frequencies and
mode shapes of the piezoelectric coupled annular plates with those obtained by finite element (FE) analysis.
Mindlin model provides better solutions than those from Kirchhoff model and the deviation from FE
results is larger for higher resonant frequencies. The piezoelectric layer increases the resonant frequencies,
being more significant for thicker layers. The effect is smaller for higher modes and for smaller radius to
thickness ratio of the plate. The analytical solutions and findings contribute towards a simplified model for
the parametric study and understanding of vibration of piezoelectric-coupled annular plate, relevant to the
design of ultrasonic motor.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The study of embedded or surface-mounted piezoelectric materials in structures has received
considerable attention in recent years because piezoelectric materials are more extensively used
see front matter r 2004 Elsevier Ltd. All rights reserved.
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either as actuators or sensors. In order to effectively utilize the piezoelectric effect and actuating
properties of piezoelectric materials, the interaction between the host structure and piezoelectric
patch must be well understood. Ding et al. [1] obtained the general solutions for the dynamic
equations of a transversely isotropic piezoelectric medium. Chen [2] simplified the equations of
motion of a spherically isotropic elastic medium with radial inhomogeneity by adopting three
displacement functions and considered some vibration problems of spherical shells. The
mathematical analyses based on elastic theory were well conducted. Sun and Zhang [3] and
Zhang and Sun [4] presented their research on the analysis of a sandwich beam and plate structure
containing a piezoelectric core, where an electric field in the thickness direction may generate
shear deformation within the core. Models for composite structures with piezoelectric materials as
sensors and actuators have also been published [5,6]. In the latter addressing the mechanics model
for the analysis of the coupled structure, the distribution of the electric potential is assumed
to be uniform in the longitudinal direction of the piezoelectric actuator and linear in its
thickness direction, which may violate Maxwell static electricity equation. Wang et al. [7] and Liu
et al. [8] presented their research on the free vibration of piezoelectric sandwich thin and thick
circular plates, respectively. Their hypotheses that the distribution of electric potential along the
thickness direction in the piezoelectric layer is simulated by a sinusoidal function were validated
by FE analysis and analytical solutions satisfying Maxwell static electricity equation were
presented.

One of the significant applications of piezoelectric materials is the design of ultrasonic motor
which was developed in early 1980s in response to the need for a lightweight, high-torque and low-
speed motor for fractional horsepower applications. It is based on the concept of driving a rotor
by mechanical vibration excited by piezoelectric patch on a stator via the piezoelectric effect [9].
The stator is usually modeled as a surface-mounted annular plate making use of its geometric
property [10]. Takano et al. [10], Hagedorn and Wallashek [11], Yang and Que [12] and Friend
and Stutts [13] studied the dynamics of an annular piezoelectric motor stator based on the thin
annular plate model where shear deformation and rotary inertia was neglected. However,
piezoelectric-coupled effect and the laminated nature of the stator have not been modeled
completely in their studies. An analytical model of ultrasonic motor has been proposed by
Hagood and McFarland [14] for the case of a laminated annular thin plate with clamped
boundary conditions at the inner edge and free boundary conditions at the outer edge. They
assumed that the distribution of electric potential is uniform in the thickness direction but
Maxwell equation is not satisfied. Hence, there may be a need to provide a more accurate model
to fully study the coupled piezoelectric effect.

In the present work, through transformation of variable suggested by Mindlin [15], analytical
solutions for the free vibration of piezoelectric coupled annular plate based on Kirchhoff plate
model (otherwise known as classical plate theory, or in short, CPT) and Mindlin plate model (also
known as improved plate theory or IPT) have been presented. Sinusoidal function [7] is used to
describe the distribution of electric potential along the thickness direction of thin and thick plate.
Maxwell static electricity equation is included as one of the governing equations. Numerical
investigations are performed for annular plates bonded by two piezoelectric layers and the results
are verified against three-dimensional finite element (3D FE) analysis using ABAQUS Version
6.3. The applicability of the proposed model is analyzed by studying the effect of different
thickness ratios of piezoelectric layer to host plate on the vibration of annular plate.
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2. Strain and stress components in piezoelectric sandwich plate

Fig. 1 shows the cross section of a laminated annular plate consisting of one host layer and two
piezoelectric layers. Both top and bottom surfaces of each piezoelectric layer are fully covered by
electrodes that are shortly connected. The cylindrical coordinate system is adopted where the r–y
plane is coincident with the mid-plane of the undeformed plate. For such plate structures, the
bending and twisting moments, and the transverse shearing forces (all in per unit of length) are
defined in the customary manner

ðMrr;Myy;MryÞ ¼

Z
ðsrr;syy; tryÞzdz

ðQr;QyÞ ¼

Z
ðtrz; tyzÞzdz ð1a;bÞ

where srr;syy are normal stress components, and try; trr; tyz are shear stress components in the
plate.

The kinematic fields in the host plate and piezoelectric layer are given by

�rr ¼
qur

qr
;

�yy ¼
ur

r
þ

quy

rqy
;

gry ¼
qur

rqy
þ

quy

qr
�

uy

r
;

grz ¼
qur

qz
þ

quz

qr
;

gyz ¼
quy

qz
þ

quz

rqy
; ð2a2eÞ
Fig. 1. Annular plate surface mounted with two piezoelectric layers.
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where uz, ur, and uy are the displacements in the transverse, radial and tangential direction of the
plate, respectively.

The constitutive relations in the host plate are expressed as

sh
rr ¼

E

1� m2
ð�rr þ m�yyÞ;

sh
yy ¼

E

1� m2
ð�yy þ m�rrÞ;

th
ry ¼

E

2ð1þ mÞ
gry;

th
rz ¼

Ek2

2ð1þ mÞ
grz;

th
yz ¼

Ek2

2ð1þ mÞ
gyz; ð3a2eÞ

where the superscript h represents the variables in the host structure, E and m are the Young’s
modulus and Poisson ratio of the host material, and k is the shear factor in Mindlin plate model
[15] to correct for the shear modulus, chosen as p=

ffiffiffiffiffi
12

p
here.

The constitutive relations in the piezoelectric layer are written as

sE
rr ¼

�C
E

11�rr þ �C
E

12�yy � �e31Ez;

sE
yy ¼

�C
E

12�rr þ �C
E

11�yy � �e31Ez;

tE
ry ¼

1
2
ð �C

E

11 �
�C

E

12Þgry;

tE
rz ¼ k2CE

55grz þ e15Er;

tE
yz ¼ k2CE

55gyz þ e15Ey; ð4a2eÞ

where the superscript E represents the variables in the piezoelectric material; �C
E

11;
�C

E

12 and e31 are
the reduced material constants of the piezoelectric medium for plane stress problems given by
�C

E

11 ¼ CE
11 � ðCE

13Þ
2=CE

33;
�C

E

12 ¼ CE
12 � ðCE

13Þ
2=CE

33 and �e31 ¼ e31 � CE
11e33=CE

33; CE
11; CE

12; CE
13; CE

33

and CE
55 are the moduli of elasticity under constant electric field, e31; e33 and e15 are the

piezoelectric constants, and Ez; Er and Ey are the electric field intensities in the radial, tangential
and transverse direction, respectively. The latter are given by

Er ¼ �
qf
qr

;

Ey ¼ �
qf
rqy

;

Ez ¼ �
qf
qz

; ð5a2cÞ
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where f is the electric potential at any point of the piezoelectric layers. The corresponding electric
displacements Dr; Dy and Dz are given by

Dr ¼ e15grz þ X11Er;

Dy ¼ e15gyz þ X11Ey;

Dz ¼ �e31ð�rr þ �yyÞ þ �X33Ez; ð6a2cÞ

where �X33 is the reduced dielectric constant, X11 and X33 are the dielectric constants, all of the
piezoelectric layer, and �X33 ¼ X33 þ e233=CE

33:
3. Piezoelectric sandwich Kirchhoff plate

In most practical applications of piezoelectric coupled annular plate shown in Fig. 1, the ratio
of its radius to the thickness of host plate is more than ten. As such, Kirchhoff assumption for thin
plates is applicable, where shear deformation and rotary inertia can be omitted.
3.1. Basic equations

The displacement field in Kirchhoff plate is assumed as follows:

ur ¼ �z
quz

qr
;

uy ¼ �z
quz

rqy
;

uz ¼ wðr; y; tÞ; ð7a2cÞ

where wðr; y; tÞ is the transverse displacement of the mid-plane. The distribution of the electric
potential in the thickness direction is assumed to be sinusoidal [7], that is

f ¼ jðr; y; tÞ sin
pðz � hÞ

h1

� �
; ð8Þ

where j is the electric potential on the mid-surface of the piezoelectric layer, h and h1 are the
thickness of the host plate and the piezoelectric layer, respectively.

The resultant moments and shear forces can be expressed as follows by substituting Eqs. (2)–(8)
into Eq. (1):

Mrr ¼ � ðd1 þ d2Þ
q2w

qr2
þ ðd1 þ d2 � 2A1Þ

qw

rqr
þ

q2w

r2qy2

� �
þ

4

p
h1 �e31j

� �
;

Myy ¼ � ðd1 þ d2 � 2A1Þ
q2w

qr2
þ ðd1 þ d2Þ

qw

rqr
þ

q2w

r2qy2

� �
þ

4

p
h1 �e31j

� �
;
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Mry ¼ �2A1
q2w

rqrqy
�

q2w

r2qy2

� �
; ð9a2cÞ

Qr ¼ � ðd1 þ d2Þ
q
qr

Dw þ
4

p
h1 �e31

qj
qr

� �
;

Qy ¼ �
1

r
ðd1 þ d2Þ

q
qy

Dw þ
4

p
h1 �e31

qj
qy

� �
; ð10a;bÞ

where

d1 ¼
2

3

Eh3

1� m2
; d2 ¼

2
3
CE

11 ðh þ h1Þ
3
� h3

� �
and A1 ¼

1

2
ð1� mÞd1 þ 1�

CE
12

CE
11

 !
d2

" #
:

The governing equation for the Kirchhoff plate is given by

qQr

qr
þ

qQy

rqy
þ

Qr

r
¼

Z h

�h

r1

q2uz

qt2
dz þ 2

Z hþh1

h

r2

q2uz

qt2
dz; ð11Þ

where r1 and r2 are the material densities of the host material and piezoelectric layer, respectively.
The electrical variables must also satisfy the Maxwell equations which require that the

divergence of the electric flux vanishes at any point within the piezoelectric layers. This condition
can be satisfied approximately by enforcing the integration of the divergence of the electric flux
across the thickness of the piezoelectric layers to vanish for any r and y:

Z hþh1

h

@ðrDrÞ

r@r
þ

@Dy

r@y
þ

@Dz

@z

� �
dz ¼ 0: ð12Þ

The solutions of w and f for wave propagation in y direction can be written as

wðr; y; tÞ ¼ �wðrÞeiðpy�otÞ;

jðr; y; tÞ ¼ �jðrÞeiðpy�otÞ:
ð13a;bÞ

Substituting Eq. (13) into Eqs. (11) and (12) gives

ðd1 þ d2ÞDD �w þ
4

p
h1 �e31D �j� A2o2 �w ¼ 0;

h2
1X11

p2 �X33
D �j� �jþ

h2
1 �e31

2p2 �X33
¼ 0;

ð14a;bÞ

where

D ¼
q2

qr2
þ

q
rqr

�
p2

r2
; A2 ¼ 2ðr1h þ r2h1Þ:



ARTICLE IN PRESS

W.H. Duan et al. / Journal of Sound and Vibration 281 (2005) 119–139 125
3.2. Solutions for w and f

Transformation of variable, similar to that in Ref. [1], is adopted. That is,

�j ¼ x �w; ð15Þ

where x is a constant. Substituting Eq. (15) into Eq. (14), gives

D D �w �
A2o2h2

1ð2X11x þ �e31pÞ � 8p �X33 �e31h1x2

2p2 �X33ðd1 þ d2Þ
�w

� �
¼ 0;

D �w �
2p2 �X33x

h2
1ð2X11x þ �e31pÞ

�w ¼ 0: ð16a;bÞ

The solution for �w is unique under the following conditions:

A2o2h2
1ð2X11x þ �e31pÞ � 8p �X33 �e31h1x2

2p2 �X33ðd1 þ d2Þx
¼

2p2 �X33x

h2
1ð2X11x þ �e31pÞ

;

2p2 �X33x

h2
1ð2X11x þ �e31pÞ

¼ l; ð17a;bÞ

where l is a constant. Under the above condition, Eq. (16) can be reduced to

D �w � l �w ¼ 0: ð18Þ

Eq. (17a) is cubic in x, which gives three roots, xi ði ¼ 1; 2; 3Þ and li ði ¼ 1; 2; 3Þ can be
calculated correspondingly from Eq. (17b). Three sets of Bessel functions ciwi1ðp; dirÞ þ

ciþ3wi2ðp; dirÞ; i ¼ 1; 2; 3 where di ¼
p
jlij can be obtained by substituting li ði ¼ 1; 2; 3Þ into

Eq. (18). The final solutions are given as

w ¼
X3
i¼1

½ciwi1ðp; dirÞ þ ciþ3wi2ðp; dirÞ	e
iðpy�otÞ;

j ¼
X3
i¼1

xi½ciwi1ðp; dirÞ þ ciþ3wi2ðp; dirÞ	e
iðpy�otÞ; ð19a;bÞ

where

wi1ðp; dirÞ ¼
JpðdirÞ lio0;

IpðdirÞ li40;

(

wi2ðp; dirÞ ¼
Y pðdirÞ lio0;

KpðdirÞ li40;

( i ¼ 1; 2; 3; ð20a2dÞ
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where J and Y are Bessel functions of the first and second kind, respectively, I and K are modified
Bessel functions of the first and second kind, respectively, and ci ði ¼ 1; . . . ; 6Þ are six constants of
integration.

As usual, the determinant of the matrix containing the system frequencies is considered after
imposing the electric and displacement boundary conditions. If the plate is insulated at the edge,
the electrical flux conservation equation is given byZ hþh1

h

Drðr; y; tÞdz ¼ 0: ð21Þ

Substituting Eq. (6a) into Eq. (21) in view of grz ¼ 0; yields the electric boundary condition

qj
qr

¼ 0: ð22Þ

The standard boundary conditions for the clamped, simply supported and free ends are given
respectively as follows:
(i)
 Clamped:

wðr1; y; tÞ ¼
qw

qr r¼r1
¼

qj
qr r¼r1

¼ 0;

wðr0; y; tÞ ¼
qw

qr r¼r0
¼

qj
qr r¼r0

¼ 0:

ð23a;bÞ
(ii)
 Simply supported:

wðr1; y; tÞ ¼ Mrrðr1; y; tÞ ¼
qj
qr r¼r1

¼ 0;

wðr0; y; tÞ ¼ Mrrðr0; y; tÞ ¼
qj
qr r¼r0

¼ 0:

ð24a;bÞ
(iii)
 Free:

Mrrðr1; y; tÞ ¼ Qðr1; y; tÞ ¼
qj
qr r¼r1

¼ 0;

Mrrðr0; y; tÞ ¼ Qðr0; y; tÞ ¼
qj
qr r¼r0

¼ 0:

ð25a;bÞ
For all possible combinations of clamped, simply supported and free edge conditions at the
inner (r ¼ r1) and outer (r ¼ r0) circular boundaries of the annular plate (Fig. 1), a matrix
involving the system frequencies can always be formulated. For example, the determinant of
frequencies under clamped–clamped (C–C) boundary condition is given by substituting Eq. (19)
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into Eq. (23), resulting in

w11ðp; d1r1Þ w12ðp; d1r1Þ w21ðp; d2r1Þ w22ðp; d2r1Þ w31ðp; d3r1Þ w32ðp; d3r1Þ

w0
11ðp; d1r1Þ w0

12ðp; d1r1Þ w0
21ðp; d2r1Þ w0

22ðp; d2r1Þ w0
31ðp; d3r1Þ w0

32ðp; d3r1Þ

x1w0
11ðp; d1r1Þ x1w0

12ðp; d1r1Þ x2w0
21ðp; d2r1Þ x2w0

22ðp; d2r1Þ x3w0
31ðp; d3r1Þ x3w0

32ðp; d3r1Þ

w11ðp; d1r0Þ w12ðp; d1r0Þ w21ðp; d2r0Þ w22ðp; d2r0Þ w31ðp; d3r0Þ w32ðp; d3r0Þ

w0
11ðp; d1r0Þ w0

12ðp; d1r0Þ w0
21ðp; d2r0Þ w0

22ðp; d2r0Þ w0
31ðp; d3r0Þ w0

32ðp; d3r0Þ

x1w0
11ðp; d1r0Þ x1w0

12ðp; d1r0Þ x2w0
21ðp; d2r0Þ x2w0

22ðp; d2r0Þ x3w0
31ðp; d3r0Þ x3w0

32ðp; d3r0Þ

��������������

��������������
;

ð26Þ

where the prime 0 denotes q=qr; and wij is given in Eq. (20). Setting Eq. (26) to zero yields the
resonant frequencies and their corresponding mode shapes.
4. Piezoelectric sandwich mindlin plate

In some applications of piezoelectric sandwich plate, the number of nodal diameters (i.e.
number of zeros in the y-direction) is relatively large and the wavelength is not necessarily small
compared to the plate thickness. This suggests that shear deformations and/or rotary inertia have
to be taken into account.
4.1. Basic equations

Mindlin [15] and Mindlin and Medick [16] corrected for the effect of shear and rotary inertia in
the plate model and obtained results of wave propagation agreeing better with those using the
exact theory. The modified expression for displacement field is written as

ur ¼ zcrðr; y; tÞ;

uy ¼ zcyðr; y; tÞ;

uz ¼ wðr; y; tÞ; ð27a2cÞ

where cr and cy are the rotations of the normal to the mid-plane, measured on the z–r and z–y
planes, respectively.

Substituting Eqs. (2)–(6), (8) and (27) into Eq. (1) yields the following resultant moments and
shear forces:

Mrr ¼ ðd1 þ d2Þ
qcr

qr
þ ðd1 þ d2 � 2A1Þ

cr

r
þ

qcy

rqy

� �
�

4

p
h1 �e31j;

Myy ¼ ðd1 þ d2 � 2A1Þ
qcr

qr
þ ðd1 þ d2Þ

cr

r
þ

qcy

rqy

� �
�

4

p
h1 �e31j;
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Mry ¼ A1
qcr

rqy
�

cy

r
þ
qcy

qr

� �
; ð28a2cÞ

Qr ¼ A3
qw

qr
þ cr

� �
�

4

p
h1e15

qj
qr

;

Qy ¼ A3
qw

rqy
þ cy

� �
�

4

p
h1e15

qj
rqy

; ð29a;bÞ

where A3 ¼ k2 Eh=ð1þ mÞ þ 2h1CE
55

� �
:

It is to be noted that Mrr; Mry; Myy; Qr and Qy must satisfy Maxwell equation (12) and the
following dynamic equilibrium equations:

qQr

qr
þ

qQy

rqy
þ

Qr

r
¼

Z h

�h

r1

q2uz

qt2
dz þ 2

Z hþh1

h

r2

q2uz

qt2
dz;

qMrr

qr
þ
qMry

rqy
þ

Mrr � Mry

r
� Qr ¼

Z h

�h

r1z
q2ur

qt2
dz þ 2

Z hþh1

h

r2z
q2ur

qt2
dz;

qMry

qr
þ

qMyy

rqy
þ

2Mry

r
� Qy ¼

Z h

�h

r1z
q2uy

qt2
dz þ 2

Z hþh1

h

r2z
q2uy

qt2
dz: ð30a2cÞ

The rotations cr and cy are expressed through the transformation [15]

cr ¼
qR

qr
þ

qH

rqy
;

cy ¼
qR

rqy
�
qH

qr
: ð31a;bÞ

It is assumed that the solutions of w, R, H and f for wave propagation in the y direction take the
form

wðr; y; tÞ ¼ �wðrÞ cosðpyÞeiot;

Rðr; y; tÞ ¼ �RðrÞ cosðpyÞeiot;

Hðr; y; tÞ ¼ �HðrÞ sinðpyÞeiot;

jðr; y; tÞ ¼ �jðrÞ cosðpyÞeiot: ð32a2dÞ

Eq. (32a–d) is adopted as it represents harmonic oscillation and is consistent with the assumption
that the plate undergoes small synchronous free vibratory motions. To satisfy Eq. (30a–c), the sine
instead of cosine function is employed for H(r, y, t).

Substituting Eqs. (31) and (32) into Eqs. (12) and (30) gives

A3D �R þ A3D �w þ A2o2 �w � A6D �j ¼ 0;

q
qr

½ðd1 þ d2ÞD �R � ðA3 � A4o2Þ �R � A3 �w þ A5 �j	 þ
p

r
½A1D �H � ðA3 � A4o2Þ �H	 ¼ 0;

p

r
½ðd1 þ d2ÞD �R � ðA3 � A4o2Þ �R � A3 �w þ A5 �j	 þ

q
qr

½A1D �H � ðA3 � A4o2Þ �H	 ¼ 0;

D �R þ A7D �w � A8D �j� A9 �j ¼ 0; ð33a2dÞ
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where

D ¼
q2

qr2
þ

q
rqr

�
p2

r2
; A4 ¼

2
3
½ðr1 � r2Þh

3
þ r2ðh þ h1Þ

3
	; A5 ¼

4h1

p
ðe15 � �e31Þ;

A6 ¼
4h1e15

p
; A7 ¼

e15

e15 þ �e31
; A8 ¼

2X11

ðe15 þ �e31Þp
; A9 ¼

2X11p

ðe15 þ �e31Þh
2
1

:

4.2. Solutions for w, cr cy and f

�H can be separated from �R and �w by differentiation, addition, and subtraction of Eqs. (33b)
and (33c). These two equations become

D½A1D �H � ðA3 � A4o2Þ �H	 ¼ 0;

D½ðd1 þ d2ÞD �R � ðA3 � A4o2Þ �R � A3 �w þ A5 �j	 ¼ 0: ð34a;bÞ

To uncouple �R, �j and �w in Eqs. (33a), (33d), and (34b), transformation of variables is applied,
similar to that in [1,15]

�R ¼ x �w;

�j ¼ y �w;
ð35a;bÞ

where x, y are constants. Eqs. (33a), (33d), and (34b) can then be simplified to

D D �w �
A3 � A5y þ ðA3 � A4o2Þx

ðd1 þ d2Þx
�w

� �
¼ 0;

D �w �
A2o2

A6y � A3ðx þ 1Þ
�w ¼ 0;

D �w �
A9y

A8y � x � A7

�w ¼ 0; ð36a2cÞ

respectively. Observe that the terms within the brackets in Eqs. (36a), (36b) and (36c) are of
identical form. Hence, for the solution of �w to be unique,

ðA3 � A4o2Þx þ A3 � A5y

ðd1 þ d2Þx
¼

A2o2

A6y � A3ðx þ 1Þ
¼

A9y

A8y � x � A7
;

A9y

A8y � x � A7
¼ l: ð37a;bÞ

Eq. (36) can be thus reduced to

D �w � l �w ¼ 0; ð38Þ

where l is a constant. Eq. (37a) is cubic in x and y, which give three pairs of roots, xi; yi ði ¼
1; 2; 3Þ; from which li ði ¼ 1; 2; 3Þ can be computed using Eq. (37b). Three sets of Bessel
functions ciwi1ðp; dirÞ þ ciþ3wi2ðp; dirÞ; i ¼ 1; 2; 3 where di ¼

p
jlij are obtained by substituting
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li ði ¼ 1; 2; 3Þ into Eq. (38a). The final solutions are given as

w ¼
X3
i¼1

½ciwi1ðp; dirÞ þ ciþ3wi2ðp; dirÞ	 cosðpyÞeiot;

R ¼
X3
i¼1

xi½ciwi1ðp; dirÞ þ ciþ3wi2ðp; dirÞ	 cosðpyÞeiot;

j ¼
X3
i¼1

yi½ciwi1ðp; dirÞ þ ciþ3wi2ðp; dirÞ	 cosðpyÞeiot; ð39a2cÞ

where the definition of wi1ðp; dirÞ and wi2ðp; dirÞ are the same as Eq. (20); and ci ði ¼ 1; . . . ; 6Þ are
integration constants.

Substituting Eq. (36a) into Eqs. (33b) and (33c), gives the following Bessel equation:

D �H � l4 �H ¼ 0; ð40a;bÞ

where

l4 ¼
A3 � A4o2

A1
:

Finally, H can be expressed as

H ¼ ½c7w41ðp; d4rÞ þ c8w42ðp; d4rÞ	 sinðpyÞeiot; ð41Þ

where d4 ¼
p
jl4j and the definition of w41ðp; d4rÞ and w42ðp; d4rÞ is the same as Eq. (20); and

ci ði ¼ 7; 8Þ are integration constants.
Substituting Eqs. (39b) and (41) into Eq. (31) gives

cr ¼
X3
i¼1

xiðci
qwi1

qr
þ ciþ3

qwi2

qr
Þ þ

p

r
ðc7w41 þ c8w42Þ

" #
cosðpyÞeiot;

cy ¼ �
p

r

X3
i¼1

xiðciwi1 þ ciþ3wi2Þ þ ðc7
qw41

qr
þ c8

qw42

qr
Þ

" #
sinðpyÞeiot: ð42a;bÞ

The determinant of the matrix of system frequencies is generated after imposing the electric and
displacement boundary conditions. The electric boundary condition can be obtained by
substituting Eq. (6a) into Eq. (21) giving

e15p cr þ
qw

qr

� �
� 2X11

qj
qr

¼ 0: ð43Þ
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The standard boundary conditions for the clamped, simply supported (soft type) and free ends
are given respectively as follows:
(i)
 Clamped:

wðr1; y; tÞ ¼ crðr1; y; tÞ ¼ cyðr1; y; tÞ ¼ ½e15pðcr þ
qw

qr
Þ � 2X11

qj
qr

	r¼r1
¼ 0;

wðr0; y; tÞ ¼ crðr0; y; tÞ ¼ cyðr0; y; tÞ ¼ ½e15pðcr þ
qw

qr
Þ � 2X11

qj
qr

	r¼r0
¼ 0:

ð44a; bÞ
(ii)
 Simply supported (soft type):

wðr1; y; tÞ ¼ Mrrðr1; y; tÞ ¼ Mryðr1; y; tÞ ¼ ½e15pðcr þ
qw

qr
Þ � 2X11

qj
qr

	r¼r1
¼ 0;

wðr0; y; tÞ ¼ Mrrðr0; y; tÞ ¼ Mryðr0; y; tÞ ¼ ½e15pðcr þ
qw

qr
Þ � 2X11

qj
qr

	r¼r0
¼ 0:

ð45a; bÞ
(iii)
 Free:

Mrrðr1; y; tÞ ¼ Mryðr1; y; tÞ ¼ Qrðr1; y; tÞ ¼ ½e15pðcr þ
qw

qr
Þ � 2X11

qj
qr

	r¼r1
¼ 0;

Mrrðr0; y; tÞ ¼ Mryðr0; y; tÞ ¼ Qrðr0; y; tÞ ¼ ½e15pðcr þ
qw

qr
Þ � 2X11

qj
qr

	r¼r0
¼ 0:

ð46a; bÞ
For all possible combinations of clamped, simply supported and free edge conditions at the
inner (r=r1) and outer (r ¼ r0) circular boundaries of the annular plate (Fig. 1), a matrix of
system frequencies can be formulated. For example, the determinant of system frequencies under
clamped–clamped (C–C) boundary condition is given by substituting Eqs. (39a), (39c), and (42)
into Eq. (44):

w11ðd1r1Þ w12ðd1r1Þ w21ðd2r1Þ w22ðd2r1Þ w31ðd3r1Þ w32ðd3r1Þ 0 0

x1w0
11ðd1r1Þ x1w0

12ðd1r1Þ x2w0
21ðd2r1Þ x2w0

22ðd2r1Þ x3w0
31ðd3r1Þ x3w0

32ðd3r1Þ
p
r1

w41ðd4r1Þ
p
r1

w42ðd4r1Þ
px1

r1
w11ðd1r1Þ

px1

r1
w12ðd1r1Þ

px2

r1
w21ðd2r1Þ

px2

r1
w22ðd2r1Þ

px3

r1
w31ðd3r1Þ

px3

r1
w32ðd3r1Þ w0

41ðd4r1Þ w0
42ðd4r1Þ

j11ðr1Þ j12ðr1Þ j21ðr1Þ j22ðr1Þ j31ðr1Þ j32ðr1Þ 0 0

w11ðd1r0Þ w12ðd1r0Þ w21ðd2r0Þ w22ðd2r0Þ w31ðd3r0Þ w32ðd3r0Þ 0 0

x1w0
11ðd1r0Þ x1w0

12ðd1r0Þ x2w0
21ðd2r0Þ x2w0

22ðd2r0Þ x3w0
31ðd3r0Þ x3w0

32ðd3r0Þ
p
r0

w41ðd4r0Þ
p
r0

w42ðd4r0Þ
px1

r0
w11ðd1r0Þ

px1

r0
w12ðd1r0Þ

px2

r0
w21ðd2r0Þ

px2

r0
w22ðd2r0Þ

px3

r0
w31ðd3r0Þ

px3

r0
w32ðd3r0Þ w0

41ðd4r0Þ w0
42ðd4r0Þ

j11ðr0Þ j12ðr0Þ j21ðr0Þ j22ðr0Þ j31ðr0Þ j32ðr0Þ 0 0

��������������������

��������������������

;

ð47Þ

where wijðp; dirÞ is expressed as wijðdirÞ for concise notation, the factors cosðpyÞeiot and sinðpyÞeiot

have been omitted; ð Þ0 ¼ q=qr; and

jijðr0Þ ¼ e15pxiwijðp; dir0Þ þ ðe15p� 2X11yiÞw
0
ijðp; dir0Þ;

jijðr1Þ ¼ e15pxiwijðp; dir1Þ þ ðe15p� 2X11yiÞw
0
ijðp; dir1Þ; i ¼ 1; 2; 3; j ¼ 1; 2:

Setting Eq. (47) to zero yields the resonant frequencies and their corresponding mode shapes.
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5. Numerical examples and discussion

The numerical solution for a three-layer laminated annular plate shown in Fig. 1 is investigated.
The material for the host plate is steel and that of the piezoelectric layer is PZT4. Their properties
are listed in Table 1. The inner radius (r1) and outer radius (r0) of the annular plate are 0.1m and
0.6m, respectively.

5.1. Comparison between proposed models and FEM

To investigate the difference between CPT- and IPT-based model, two steel plates with
thickness, h=0.01m and 0.03m, are studied under four kinds of boundary conditions: C–C, S–C,
C–S and S–S, where the first and second letter denotes the edge condition at the inner and outer
edge, respectively, C denotes clamped and S denotes simply supported. The thickness ratio of the
piezoelectric layer to the host plate is 1/10. The results are compared with those from 3D FE
analyses using ABAQUS 6.3.

Table 2 lists the frequencies for the free vibration of the annular plate with h=0.01m
corresponding to thin plate, for mode shapes with 0 to 2 diametrical nodes (denoted by p) and 0 to
2 nodal circles (denoted by n). For a thin plate with large radius–thickness ratio (r0/h ¼ 20), the
frequencies from both CPT- and IPT-based model are in close agreement with the FE results. The
IPT-based model produces (slightly lower) results almost coincident with those from FE analysis
while the results from CPT-based model produces higher results but differ by less than 5% for all
modes listed in Table 2.

Table 3 lists the frequencies for the free vibration of the annular plate with h=0.03m
corresponding to moderately thick plate, for mode shapes with 0 to 2 diametrical nodes and 0 to 2
nodal circles. As the radius–thickness ratio is small (r0/h ¼ 20), the IPT-based model provides
results lower than those from FE analysis, with a maximum difference of only 3.4% for the case
Table 1

Material properties

Property Host structure (steel) Piezoelectric layer (PZT4)

Young’s modulus (NXm2) E ¼ 200� 109

CE
11 ¼ 132� 109

CE
12 ¼ 71� 109

CE
33 ¼ 115� 109

CE
13 ¼ 73� 109

CE
55 ¼ 73� 109

Poisson ratio 0.3 —

Mass density (kg/m3) 7.8� 103 7.5� 103

e31 ðC/m2Þ — �4.1

e33 ðC/m2Þ — 14.1

e15 ðC/m2Þ — 10.5

X11 ðF/mÞ — 7.124� 10�9

X33 ðF/mÞ — 5.841� 10�9



ARTICLE IN PRESS

Table 2

Comparison of frequencies (rad/s) of thin annular plate under C–C, C–S, S–C, S–S boundary conditions for r0=h ¼ 60

BC p n FEM CPT-based model Error (%) IPT-based model Error (%)

Ca–C 0 0 2812 2815 0.09 2769 �1.53

1 7659 7786 1.66 7517 �1.85

2 14,753 15,306 3.75 14,428 �2.20

1 0 2942 2952 0.36 2899 �1.43

1 7882 8030 1.87 7743 �1.76

2 15,020 15,608 3.91 14,698 �2.14

2 0 3471 3506 0.99 3438 �0.97

1 8635 8840 2.38 8507 �1.48

2 15,877 16,569 4.36 15,566 �1.96

C–S 0 0 1848 1843 �0.31 1823 �1.36

1 6164 6220 0.92 6066 �1.59

2 12,770 13,111 2.67 12,523 �1.94

1 0 1981 1983 0.10 1957 �1.21

1 6384 6459 1.16 6289 �1.50

2 13,038 13,411 2.86 12,794 �1.87

2 0 2511 2535 0.95 2495 �0.62

1 7134 7259 1.75 7050 �1.17

2 13,903 14,367 3.34 13,672 �1.66

S–C 0 0 2213 2216 0.12 2194 �0.86

1 6544 6615 1.08 6455 �1.37

2 13,169 13,531 2.75 12,934 �1.78

1 0 2418 2446 1.13 2397 �0.89

1 6865 6983 1.72 6774 �1.32

2 13,528 13,961 3.20 13,293 �1.74

2 0 3178 3236 1.81 3159 �0.61

1 7902 8119 2.74 7815 �1.11

2 14,663 15,274 4.16 14,428 �1.61

S–S 0 0 1395 1396 0.04 1388 �0.51

1 5173 5198 0.49 5115 �1.11

2 11,283 11,489 1.82 11,114 �1.50

1 0 1593 1613 1.30 1583 �0.58

1 5490 5558 1.23 5433 �1.05

2 11,647 11,918 2.32 11,478 �1.45

2 0 2312 2355 1.84 2306 �0.25

1 6521 6669 2.27 6468 �0.82

2 12,798 13,225 3.34 12,632 �1.30

p=Number of nodal diameters, n=number of nodal circles, C=clamped, S=simply supported.
aFirst letter denotes edge condition at inner edge.
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where p=2, n=2 under C–C boundary condition while the frequencies computed by CPT-based
model can be 39.7% greater than those by FE analysis.

Both the CPT- and IPT-based model give results closer to the FE analysis results at lower
frequencies than they do at higher frequencies as shown in Tables 2 and 3. For example, in
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Table 3

Comparison of frequencies (rad/s) of moderately thick annular plate under C–C, C–S, S–C, S–S boundary conditions

for r0=h ¼ 20

BC p n FEM CPT-based model Error (%) IPT-based model Error (%)

Ca–C 0 0 7608 8444 10.98 7416 �2.52

1 18,828 23,358 24.06 18,235 �3.15

2 33,096 45,917 38.74 31,869 �3.71

1 0 7918 8857 11.86 7728 �2.40

1 19,358 24,089 24.44 18,774 �3.02

2 33,685 46,824 39.00 32,468 �3.61

2 0 9336 10,517 12.65 9169 �1.79

1 21,199 26,520 25.10 20,639 �2.64

2 35,591 49,706 39.66 34,397 �3.35

C–S 0 0 5171 5528 6.90 5064 �2.07

1 15,924 18,661 17.19 15,500 �2.66

2 30,188 39,332 30.29 29,201 �3.27

1 0 5512 5950 7.95 5406 �1.91

1 16,464 19,376 17.69 16,048 �2.52

2 30,803 40,232 30.61 29,827 �3.17

2 0 6990 7604 8.79 6907 �1.17

1 18,376 21,776 18.50 17,986 �2.12

2 32,806 43,101 31.38 31,854 �2.90

S–C 0 0 6218 6647 6.91 6125 �1.49

1 16,939 19,845 17.16 16,536 �2.38

2 31,161 40,594 30.27 30,197 �3.09

1 0 6664 7337 10.10 6555 �1.64

1 17,593 20,949 19.07 17,172 �2.39

2 31,809 41,883 31.67 30,826 �3.09

2 0 8650 9707 12.22 8528 �1.41

1 19,909 24,357 22.34 19,453 �2.29

2 33,990 45,821 34.81 32,959 �3.03

S–S 0 0 4032 4187 3.86 3997 �0.85

1 14,030 15,593 11.14 13,775 �1.82

2 28,159 34,466 22.40 27,430 �2.59

1 0 4498 4840 7.60 4450 �1.06

1 14,716 16,674 13.30 14,443 �1.86

2 28,852 35,753 23.92 28,102 �2.60

2 0 6484 7064 8.94 6433 �0.79

1 17,162 20,008 16.58 16,859 �1.77

2 31,183 39,676 27.23 30,385 �2.56

p=Number of nodal diameters, n=number of nodal circles, C=clamped, S=simply supported.
aFirst letter denotes edge condition at inner edge.
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Table 3, the CPT-based model gives a frequency 39.7% greater than that of the FE analysis for
p=2 and n=2 while it gives a value of only 11.0% greater than that of the FE analysis for p=0
and n=0 under C–C boundary condition. Moreover S–S boundary conditions yield smaller
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h(m) BC cases p=0, n=0 p=1, n=0 p=2, n=0 

FE results 

C-C
a 

CPT-based 
model results 

FE results 

0.01 

S-S 

CPT-based 
model results 

FE results 

C-C 

IPT-based 
model results 

FE results 

0.03 

S-S 

IPT-based 
model results 

p = number of nodal diameters. n= number of nodal circles.
C = clamped, S = simply supported.  
a first letter denotes edge condition at inner edge. 

Fig. 2. Comparison of first three displacement mode shapes for annular plate (h=0.01 for thin plate condition and 0.03

for moderately thick plate condition) under C–C and S–S conditions from FE and proposed solutions.
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frequencies than those under C–C, C–S and S–C boundary conditions and hence their results are
closer to the FE results. The CPT-based model gives higher frequencies than IPT-based model
because the CPT-based model neglects the effect of transverse shear deformation and rotary
inertia which implies a stiffer model. Fig. 2 shows the first three mode shapes of the annular plate
of thickness h=0.01m (simulating a thin plate) and 0.03m (simulating a moderately thick plate)
obtained by the proposed model and 3D FE results. The mode shapes for the number of nodal
diameters p=0, 1, 2 and number of nodal circles n=0 from the proposed modals and 3D FE are
almost identical.
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5.2. Effect of piezoelectric layer

To investigate the effect of piezoelectric layer on the vibration of piezoelectric coupled plate, the
two plates in Section 5.1 are studied based on the proposed models and FE analysis under C–C
boundary condition. Three different thickness ratios of piezoelectric layer to host plate, h1=2h ¼
1
12
; 1

8
; and 1

5
; are adopted.

Table 4 lists the frequencies for free vibration modes with p=0–2 diametrical nodes and n=0–2
nodal circles, where the case of h1=0 provides the base for comparing the effect of the
piezoelectric layer on the frequencies (and stiffness) of the system. For CPT-based model with r0/
h=60 (thin plate), the percentage increase is around 2.7% for all modes with h1/2h=1/12. The
effect is higher for thicker piezoelectric layer where with h1/2h=1/8, and 1/5, the increase is about
4.9% and 10.0%, respectively, for all modes. This is mainly due to the increase in bending stiffness
rather than the piezoelectric effect, as confirmed by results shown in Fig. 3, where the frequency
ratio based on FEM simulation under C–C conditions is plotted (full line shows the effect of
stiffness due to increase in thickness from piezoelectric layer whereas dotted line shows the effect
of piezoelectricity only for this particular PZT4). Similar findings are obtained for r0/h=20. For
IPT-based model when r0/h=60, first the frequencies are lower than the corresponding CPT-
based values even with the presence of piezoelectric layers. Second, the increase in frequency for
the IPT-based for h1/2h=1/12, 1/8, and 1/5 are 2.5%, 4.6% and 9.3% respectively when p=0 and
n=0. Both can be attributed by the IPT-model being less stiff. The increase in resonant frequency
is smaller for higher modes indicating reduced bending stiffness effect as confirmed by Fig. 3. For
example, when r0/h=60 and h1/2h=1/12, the increase is 2.5% for p=0 and n=0, and 1.9% for
p=2 and n=2. The increase in resonant frequency is also smaller for lower r0/h values, for
example when r0/h=20 and h1/2h=1/12, the increase is 1.2% (compared to 2.5% for r0/h=60
and h1/2h=1/12) for p=0 and n=0. This effect is not obvious for the CPT-based results as it does
not account for the shear effect.
6. Conclusions

The free vibration of a three-layer piezoelectric laminated annular plate based on the Kirchhoff
and Mindlin plate theories are investigated for the case where the electrodes on the piezoelectric
layers are shortly connected. The electric potential distribution across thickness of piezoelectric
layer is modeled by a sinusoidal function and Maxwell equation is enforced. Analytical solutions
based on transformation of variables are presented. Numerical validation of the solutions against
3D FE results was performed for annular plates with different radius–thickness ratio under
different boundary conditions. The IPT-based model provides results similar to those from FE
analysis for both thin and thick plates. The solutions based on CPT-based model are shown to be
valid only for thin plates and diverge from the FE results for thick plates, particularly for high
frequencies. Results indicate that thicker piezoelectric layer increases the resonant frequencies of
the system but the effect is less significant for higher modes and also plates with lower radius to
thickness ratio. The analytical solutions provided and the findings will be used in the design of
piezoelectric materials in mechanical systems for practical applications, such as the ultrasonic
motor.
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Table 4

Frequencies (rad/s) of annular plate under C–C boundary condition with piezoelectric layers of different thickness

P n h1 ¼ 0 h1=2h ¼ 1=12 Increments(%) h1=2h ¼ 1=8 Increments(%) h1=2h ¼ 1=5 Increments(%)

CPT-based model (r0/h ¼ 60)

0 0 2718 2792 2.70 2853 4.93 2989 9.95

1 7520 7723 2.70 7891 4.93 8268 9.95

2 14,783 15,182 2.70 15,512 4.93 16,253 9.95

1 0 2851 2928 2.70 2992 4.93 3135 9.95

1 7755 7965 2.70 8138 4.93 8527 9.95

2 15,075 15,482 2.70 15,818 4.93 16,574 9.95

2 0 3385 3477 2.70 3553 4.93 3723 9.95

1 8538 8768 2.70 8959 4.93 9387 9.95

2 16,002 16,434 2.70 16,791 4.93 17,594 9.95

CPT-based model (r0/h ¼ 20)

0 0 8155 8376 2.71 8558 4.93 8967 9.95

1 22,560 23,169 2.70 23,672 4.93 24,804 9.95

2 44,348 45,545 2.70 46,534 4.93 48,760 9.95

1 0 8554 8785 2.70 8976 4.93 9405 9.95

1 23,266 23,894 2.70 24,413 4.93 25,580 9.95

2 45,224 46,445 2.70 47,453 4.93 49,722 9.95

2 0 10,157 10,432 2.71 10,659 4.93 11,168 9.95

1 25,613 26,305 2.70 26,877 4.93 28,162 9.95

2 48,007 49,303 2.70 50,374 4.93 52,783 9.95

IPT-based model (r0/h ¼ 60)

0 0 2681 2748 2.49 2804 4.57 2930 9.25

1 7302 7465 2.24 7604 4.14 7918 8.44

2 14,069 14,339 1.92 14,577 3.61 15,116 7.45

1 0 2808 2878 2.47 2936 4.53 3066 9.19

1 7523 7690 2.22 7833 4.12 8154 8.39

2 14,334 14,608 1.91 14,849 3.60 15,396 7.41

2 0 3331 3412 2.45 3481 4.50 3635 9.13

1 8267 8449 2.20 8604 4.07 8955 8.32

2 15,186 15,472 1.88 15,725 3.55 16,299 7.34

IPT-based model (r0/h ¼ 20)

0 0 7297 7384 1.19 7471 2.37 7670 5.10

1 18,204 18,209 0.03 18,287 0.46 18,512 1.69

2 32,172 31,892 �0.87 31,855 �0.99 31,924 �0.77

1 0 7607 7695 1.15 7783 2.31 7989 5.02

1 18,738 18,746 0.04 18,829 0.48 19,069 1.76

2 32,771 32,490 �0.86 32,457 �0.96 32,537 �0.72

2 0 9025 9130 1.16 9237 2.34 9486 5.11

1 20,594 20,607 0.06 20,703 0.53 20,982 1.88

2 34,711 34,418 �0.84 34,389 �0.93 34,492 �0.63

p=Number of nodal diameters, n=number of nodal circles.
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p= number of nodal diameters. n = number of nodal circles.  

Fig. 3. Frequency ratio based on FEM simulation under C–C conditions (full line [left axis] — piezoelectric coupled

plate with r0/h=60 and h1/2h=1/10 not accounting for piezoelectric effect over plate with piezoelectric layer removed

(h1=0); dotted line [right axis] — piezoelectric coupled plate accounting for piezoelectric effect over same plate without

piezoelectric effect).
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